

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # ROS 2 Middleware Layer for RTI Connext DDS

This repository contains two novel implementations of the [ROS 2](https://index.ros.org/doc/ros2/)
RMW layer which allow developers to deploy their ROS applications on top of
[RTI Connext DDS Professional](https://www.rti.com/products/connext-dds-professional)
and [RTI Connext DDS Micro](https://www.rti.com/products/connext-dds-micro).

The repository provides two RMW packages:

	rmw_connextdds

	rmw_connextddsmicro

Package rmw_connextdds is meant to be a replacement for [rmw_connext_cpp](https://github.com/ros2/rmw_connext).
This new implementation resolves several performance issues, and it improves out-of-the-box
interoperability with DDS applications.

The repository is undergoing stabilization, with some features still in
active development.
Please consider reporting any [issue](https://github.com/rticommunity/rmw_connextdds/issues)
that you may experience, while monitoring the repository for frequent updates.

For any questions or feedback, feel free to reach out to robotics@rti.com.

Quick Start

	Load ROS into the shell environment, e.g. if you are using Foxy:

`sh
source /opt/ros/foxy/setup.bash
`

	Configure RTI Connext DDS Professional and/or RTI Connext DDS Micro on your
system (see [Requirements](#rti-connext-dds-requirements)). Make the installation(s)
available via environment variables, e.g. by using the provided
rtisetenv_<architecture>.bash script (replace ~/rti_connext_dds-6.0.1 with
the path of your Connext installation):


	```sh
	source ~/rti_connext_dds-6.0.1/resource/scripts/rtisetenv_x64Linux4gcc7.3.0.bash
export CONNEXTDDS_DIR=${NDDSHOME}
```


	Create an overlay directory and clone the repository:

`sh
mkdir -p ~/ros2_connextdds/src/ros2
cd ~/ros2_connextdds
git clone https://github.com/rticommunity/rmw_connextdds.git src/ros2/rmw_connextdds
`

	Build the RMW:

`sh
colcon build --symlink-install
`

	Load the generated environment script:

`sh
source ~/ros2_connextdds/install/setup.bash
`

	Run ROS applications with RTI Connext DDS Professional:

`sh
RMW_IMPLEMENTATION=rmw_connextdds ros2 run demo_nodes_cpp talker
`

	Run ROS applications with RTI Connext DDS Micro:

`sh
RMW_IMPLEMENTATION=rmw_connextddsmicro ros2 run demo_nodes_cpp talker
`

Support for different ROS 2 Releases

rmw_connextdds, and rmw_connextddsmicro support multiple versions of ROS 2.

The following table summarizes which branch of the repository should be
checked out in order to compile the RMW implementations for a specific ROS 2
release:

|ROS 2 Release|Branch|
|-------------|——|
|Rolling |`master`|
|Foxy |`master`|
|Eloquent |`dashing`|
|Dashing |`dashing`|

RTI Connext DDS Requirements

Both RMW packages require the appropriate version of RTI Connext DDS to be
available on the build and target systems.

rmw_connextdds requires RTI Connext DDS Professional (version 5.3.1 or later),
while rmw_connextddsmicro requires RTI Connext DDS Micro (version 3 or later).

The installations must be made available via environment variables. If no
valid installation is detected, the packages will be skipped and not be built.

|RMW|RTI Product|Environment Variable(s)|Required|Default|
|---|———–|-----------------------|——–|-------|
|`rmw_connextdds`|RTI Connext DDS Professional 5.3.1, or 6.x|`CONNEXTDDS_DIR`, or `NDDSHOME`|Yes|None|
|`rmw_connextddsmicro`|RTI Connext DDS Micro 3.x |`RTIMEHOME`|No (if RTI Connext DDS Professional 6.x is available)|Guessed from contents of RTI Connext DDS Professional installation (6.x only, 5.3.1 users must specify `RTIMEHOME`).|

Multiple versions of RTI Connext DDS Professional

Package rti_connext_dds_cmake_module will first check variable
${CONNEXTDDS_DIR}, and then fall back to ${NDDSHOME} to determine the
location of the RTI Connext DDS Professional libraries used by
rmw_connextdds

This behavior allows users of the old Connext RMW (rmw_connext_cpp) who
have installed RTI Connext DDS Professional 5.3.1 via the apt package
rti-connext-dds-5.3.1, to have both that version, and a more recent one
(e.g. 6.0.1) installed on their system, but configured via different variables.

If rmw_connext_cpp is installed via debian package
ros-<version>-rmw-connext-cpp, variable ${NDDSHOME} will always be
hard-coded to the install location of the apt package
(/opt/rti.com/rti_connext_dds-5.3.1).

In this case, you can use ${CONNEXTDDS_DIR} to point to a Connext 6.x
installation, making sure to source script
rti_connext_dds-6.x.x/resource/scripts/rtisetenv_<architecture>.bash after
loading your ROS installation, so that the Connext 6.x libraries and paths will
be found first in the relevant environement variables (e.g. ${LD_LIBRARY_PATH}).

If you encounter any errors with selecting your desired Connext installation,
consider uninstalling rmw_connext_cpp and connext_cmake_module
(e.g. sudo apt remove ros-<version>-rmw-connext-cpp ros-<version>-connext-cmake-module).

Runtime Configuration

In addition to standard configuration facilities provided by the ROS2 RMW
interface, rmw_connextdds, and rmw_connextddsmicro support the additional
configuration of some aspects of their runtime behavior via custom environment
variables.

	[RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE](#RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE)

	[RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS](#RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS)

	[RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY](#RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY)

	[RMW_CONNEXT_ENDPOINT_QOS_OVERRIDE_POLICY](#RMW_CONNEXT_ENDPOINT_QOS_OVERRIDE_POLICY)

	[RMW_CONNEXT_INITIAL_PEERS](#RMW_CONNEXT_INITIAL_PEERS)

	[RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE](#RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE)

	[RMW_CONNEXT_REQUEST_REPLY_MAPPING](#RMW_CONNEXT_REQUEST_REPLY_MAPPING)

	[RMW_CONNEXT_UDP_INTERFACE](#RMW_CONNEXT_UDP_INTERFACE)

	[RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE](#RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE)

RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE

Enable different policies to improve interoperability with rmw_cyclonedds_cpp.

By default, ROS2 applications using rmw_connextdds will be able to communicate
with those using rmw_cyclonedds_cpp only via ROS2 publishers and subscribers,
while ROS2 clients and services will not interoperate across vendors.

The reason for this incompatibility lies in rmw_cyclonedds_cpp’s use of a custom
mapping for propagating request metadata between clients and services.

When this “compatibility mode” is enabled, rmw_connextdds (and rmw_connextddsmicro)
will use this non-standard profile in order to interoperate with rmw_cyclonedds_cpp,
instead of using one the two standard profiles defined by the DDS-RPC specification
(see [RMW_CONNEXT_REQUEST_REPLY_MAPPING](#rmw_connext_request_reply_mapping)).

RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS

By default, rmw_connextdds will try to detect the use of “large data” types,
and automatically optimize the QoS of DDS DataWriters and DataReaders
using these types, to improve out of the box performance on reliable streams.

These optimizations will be applied to any endpoint whose type has a serialized
size of at least 1MB (configured by a compile-time limit).

rmw_connextdds will modify a “large data” endpoint’s RTPS reliability
protocol parameters to more quickly recover samples, which typically improves
performance in the presence of very fragmented data, but it might also
end up increasing network traffic unnecessarily, particularly if data is not
exchanged at a fast periodic pace.

Variable RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS may be used to disable
these automatic optimizations, and revert to Connext’s default behavior.

RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY

By default, rmw_connextdds modifies the QoS of its DomainParticipant to enable
the optimizations defined by RTI Connext DDS’ built-in QoS snippet
Optimization.Discovery.Endpoint.Fast.

These optimizations speed up the discovery process between different applications
but they also introduce an overhead in network traffic, which might be undesirable
for larger systems.

Variable RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY may be used to disable
these automatic optimizations, and to leave the DomainParticipant’s QoS to
its defaults.

RMW_CONNEXT_ENDPOINT_QOS_OVERRIDE_POLICY

When this variable is not set or set to always, the QoS settings specified in
the default profile will be used and the ros QoS profile will be applied on top
of it. You can use topic filters in XML profile files to have different defaults
for different topics, but you have to use the mangled topic names
(see [ROS topic mangling conventions](#ros-topic-mangling-conventions)).

In case this variable is set to never, the QoS settings will be loaded from
the default profile as before but the ros QoS profile will be ignored.
Be aware of configuring the QoS of rcl topics (rt/rosout, rt/parameter_events,
etc.) and the rmw internal topic ros_discovery_info correctly.

	This variable can also be set to dds_topics: <regex>, e.g.:
	dds_topics: rt/my_topic|rt/my_ns/another_topic.

In that case, QoS settings for topics matching the provided regex will be
loaded in the same way as the never policy, and the ones that don’t match
will be loaded in the same way as the always policy.

ROS topic mangling conventions

ROS mangles topic names in the following way:

	Topics are prefixed with rt. e.g.: /my/fully/qualified/ros/topic is converted to rt/my/fully/qualified/ros/topic.

	The service request topics are prefixed with rq and suffixed with Request. e.g.: /my/fully/qualified/ros/service request topic is rq/my/fully/qualified/ros/serviceRequest.

	The service response topics are prefixed with rr and suffixed with Response. e.g.: /my/fully/qualified/ros/service response topic is rr/my/fully/qualified/ros/serviceResponse.

RMW_CONNEXT_INITIAL_PEERS

Variable RMW_CONNEXT_INITIAL_PEERS can be used to specify a list of
comma-separated values of “address locators” that the DomainParticipant created
by the RMW will use to try to make contact with remote peer applications
during the DDS discovery phase.

The values will be parsed, trimmed, and stored in QoS field
DDS_DomainParticipantQos::discovery::initial_peers, overwriting any
value it previously contained.

While both rmw_connextdds and rmw_connextddsmicro will honor this variable,
[equivalent, and more advanced, functionality is already available in RTI Connext DDS](https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ConfigPeersListUsed_inDiscov.htm),
for example using variable NDDS_DISCOVERY_PEERS.

For this reason, only users of rmw_connextddsmicro should consider specifying
RMW_CONNEXT_INITIAL_PEERS.

For example, rmw_connextddsmicro will use lo as its default UDP network
interface (see [RMW_CONNEXT_UDP_INTERFACE](#RMW_CONNEXT_UDP_INTERFACE)),
which will prevent it from accessing the default discovery peer
(multicast address 239.255.0.1).
The default peer configuration will also prevent the DomainParticipant from
carrying out discovery over the built-in shared-memory transport.
To enable discovery over this transport, in addition to
the default multicast peer:

```sh
RMW_IMPLEMENTATION=rmw_connextddsmicro RMW_CONNEXT_INITIAL_PEERS=”_shmem://, 239.255.0.1” 


ros2 run demo_nodes_cpp listener




```

RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE

ROS2 applications using rmw_connextdds will not be able to interoperate with
applications using the previous RMW implementation for RTI Connext DDS, rmw_connext_cpp,
unless variable RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE is used to enable
a “compatibility” mode with these older implementation.

In particular, when this mode is enabled, rmw_connextdds will revert to adding
a suffix (_) to the end of the names of the attributes of the ROS2 data types
propagated via DDS discovery.

RMW_CONNEXT_REQUEST_REPLY_MAPPING

The [DDS-RPC specification](https://www.omg.org/spec/DDS-RPC/About-DDS-RPC/)
defines two profiles for mapping “request/reply” interactions over DDS messages
(e.g. ROS2 clients and services):

	the basic profile conveys information about the originator of a request as
an inline payload, serialized before the actual request/reply payloads.

	The extended profile relies on DDS’ metadata to convey request/reply
information out of band.

By default, rmw_connextdds uses the extended profile when sending requests
from a ROS2 client to a service, while rmw_connextddsmicro uses the basic one.

Variable RMW_CONNEXT_REQUEST_REPLY_MAPPING can be used to select the actual
profile used at runtime. Either “basic” or “extended” may be specified.

At the moment, the extended profile is only available with rmw_connextdds.
In this configuration, rmw_connextdds will interoperate with rmw_fastrtps_cpp,
e.g.:

```sh
RMW_IMPLEMENTATION=rmw_connextdds 


ros2 run demo_nodes_cpp add_two_ints_server





	RMW_IMPLEMENTATION=rmw_fastrtps_cpp 
	ros2 run demo_nodes_cpp add_two_ints_client





```

When using the basic profile, rmw_connextdds will interoperate with
rmw_connextddsmicro, e.g.:

```sh
RMW_IMPLEMENTATION=rmw_connextdds RMW_CONNEXT_REQUEST_REPLY_MAPPING=basic 


ros2 run demo_nodes_cpp add_two_ints_server




RMW_IMPLEMENTATION=rmw_connextddsmicro RMW_CONNEXT_INITIAL_PEER=localhost 


ros2 run demo_nodes_cpp add_two_ints_client




```

Use variable [RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE](#RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE)
to enable interoperability with rmw_cyclonedds_cpp using a non-standard version
of the basic profile, e.g.:

```sh
RMW_IMPLEMENTATION=rmw_connextdds RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE=y 


ros2 run demo_nodes_cpp add_two_ints_server





	RMW_IMPLEMENTATION=rmw_cyclonedds_cpp 
	ros2 run demo_nodes_cpp add_two_ints_client





```

RMW_CONNEXT_UDP_INTERFACE

RTI Connext DDS Micro requires applications to explicitly configure the network
interface to use for UDPv4 communication.

rmw_connextddsmicro makes the arbitrary decision of using lo as the default
interface.

This is undesireable if non-local communication is required, and/or if the
default DDS multicast peer (239.255.0.1) is to be used.

Variable RMW_CONNEXT_UDP_INTERFACE may be used to customize the network interface
actually used by RTI Connext DDS Micro’s UDPv4 transport, e.g. to use eth0:

```sh
RMW_IMPLEMENTATION=rmw_connextddsmicro RMW_CONNEXT_UDP_INTERFACE=eth0 


ros2 run demo_nodes_cpp listener




```

This variable is not used by rmw_connextdds.

RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE

rmw_connextdds will always set DDS_DataWriterQos::publish_mode::kind of
any DataWriter it creates to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS, in order to
enable out of the box support for “large data”.

This behavior might not be always desirable, and it can be disabled by setting
RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE to a non-empty value.

This variable is not used by rmw_connextddsmicro, since it doesn’t
automatically override DDS_DataWriterQos::publish_mode::kind.

 —
name: Bug report
about: Report an issue to help us improve rmw_connextdds
title: ‘’
labels: ‘’
assignees: asorbini

—

System Info

	OS
- [e.g. Ubuntu 20.04]

	ROS version and installation type
- [e.g. foxy/binary, rolling/source]

	RTI Connext DDS version and installation type
- [e.g. Pro 5.3.1/apt, Micro 3.0.3/rtipkg]

	RMW version or commit hash
- [e.g. 44cbdc3f45365890921195cf8ed10aaea9633270]

Bug Description

[A clear and concise description of what the problem is]

Expected Behavior

[A description of what you expected to happen]

How to Reproduce

[Instructions on how to reproduce the problem]

```

```

Workarounds

[Ways that you have discovered to overcome the issue, if any]

Additional context

[Any additional relevant information about the problem]

 —
name: Feature request
about: Suggest an idea for extending rmw_connextdds
title: ‘’
labels: ‘’
assignees: ‘’

—

Feature Description

[A clear and concise description of what you would like to see implemented]

Implementation Considerations

[Any context that you think will help implementing the proposed feature]

Changelog for package rmw_connextdds

0.4.0 (2021-03-25)

	Add ability to override of endpoint qos settings based on topic name.

	Optimize QoS for reliable large data.

	Only trigger data condition if samples were loaned from reader.

	Alternative WaitSet implementation based on C++ std, selectable at
compile-time.

0.3.1 (2021-03-15)

0.3.0 (2021-03-12)

	Add <buildtool_export_depend> for ament_cmake.

	Use default dds.transport.UDPv4.builtin.ignore_loopback_interface.

0.2.1 (2021-03-11)

	Renamed environment variables (RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE,
RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE).

	Support a list of initial peers via RMW_CONNEXT_INITIAL_PEERS.

0.2.0 (2021-03-10)

0.1.1 (2021-03-10)

0.1.0 (2021-03-10)

	Initial release.

Changelog for package rmw_connextdds_common

0.4.0 (2021-03-25)

	Add ability to override of endpoint qos settings based on topic name (Pro).

	Optimize QoS for reliable large data (Pro).

	Only trigger data condition if samples were loaned from reader.

	Alternative WaitSet implementation based on C++ std, selectable at
compile-time.

0.3.1 (2021-03-15)

0.3.0 (2021-03-12)

	Add <buildtool_export_depend> for ament_cmake.

	Use default dds.transport.UDPv4.builtin.ignore_loopback_interface.

0.2.1 (2021-03-11)

0.2.0 (2021-03-10)

0.1.1 (2021-03-10)

	Don’t log an error on WaitSet::wait() timeout.

0.1.0 (2021-03-10)

	Initial release.

Changelog for package rmw_connextddsmicro

0.4.0 (2021-03-25)

	Only trigger data condition if samples were loaned from reader.

	Alternative WaitSet implementation based on C++ std, selectable at
compile-time.

0.3.1 (2021-03-15)

0.3.0 (2021-03-12)

	Add <buildtool_export_depend> for ament_cmake.

0.2.1 (2021-03-11)

0.2.0 (2021-03-10)

0.1.1 (2021-03-10)

0.1.0 (2021-03-10)

	Initial release.

Changelog for package rti_connext_dds_cmake_module

0.4.0 (2021-03-25)

0.3.1 (2021-03-15)

	Pass -Wl,--no-as-needed for system dependencies of Connext 5.3.1.

	Set IMPORTED_NO_SONAME true for Connext 5.3.1 imported library target.

0.3.0 (2021-03-12)

	Add <buildtool_export_depend> for ament_cmake.

	Add <depend> for rti-connext-dds-5.3.1

0.2.1 (2021-03-11)

0.2.0 (2021-03-10)

	Add dependency from rti-connext-dds-5.3.1.

0.1.1 (2021-03-10)

0.1.0 (2021-03-10)

	Initial release.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

