rmw_connextdds
Release 0.4.0

Andrea Sorbini <asorbini@rti.com>

Mar 30, 2021

TABLE OF CONTENTS

1 User manual 1
L1 Installation o o o e e e e e e e e e e e e e e e 1
1.2 BuildOptions. o o e e e e e e e e e e e 5
1.3 Runtime Configuration it e e e e e e e 7
1.4 Release HiStOry o o o e e e e e e e e e e e e 10
2 Developer manual 11
2.1 Coding Style e e 11

CHAPTER
ONE

USER MANUAL

1.1 Installation

1.1.1 Installation Requirements

ROS 2 Releases

rmw_connextdds and rmw_connextddsmicro both support multiple versions of ROS 2.

The following table summarizes the installation methods available for each release:

ROS 2 Release | From Source | Binary
Rolling Yes Yes
Foxy Yes No
Eloquent Yes No
Dashing Yes No

RTI Connext DDS Requirements

Both RMW packages require the appropriate version of RTI Connext DDS to be available on the build and target
systems.

rmw_connextdds requires RTI Connext DDS Professional (version 5.3.1 or later), while
rmw_connextddsmicro requires RTT Connext DDS Micro (version 3.0.3 or later).

The installations must be made available via environment variables. The RMW packages will be skipped, and no
library will be generated if the required product is not installed.

Variables can also be specified as arguments to cmake (e.g. ——cmake—args —-DVAR=VALUE), in which case they
will take precedence over values in the environment.

rmw_connextdds, Release 0.4.0

RTI Connext DDS Professional Requirements

RTI Connext DDS Professional 5.3.1 or later must be installed in order to build and use rmw_ connextdds.

The installation path must be specified using either CONNEXTDDS_DIR, or NDDSHOME. CONNEXTDDS_DIR takes
precendence over NDDSHOME.

The build system will try to guess the correct target architecture based on the host build environment. Use
CONNEXTDDS_ARCH to manually specify the target build architecture. This value must match one of the set of
libraries installed under $ { CONNEXTDDS_DIR}/1ib.

Note: The rtisetenv_<architecture> scripts shipped with RTT Connext DDS can be used to automatically
set NDDSHOME (in addition to configuring PATH and LD_LIBRARY_PATH to load the Connext libraries and tools).

Even though they are “architecture-specific”, these scripts will not set CONNEXTDDS_ARCH.

Note: A warning will be generated by package rti_connext_dds_cmake_module if no Connext installation
is specified.

RTI Connext DDS Micro Requirements

RTI Connext DDS Micro 3.0.3 or later must be installed in order to build and use rmw_connextddsmicro.

Specify the installation path using RTIMEHOME (optional). If unspecified, the build system will inspect the
installation of RTI Connext DDS Professional (if one is available) for a directory whose name starts with
rti_connext_dds_micro-. The first result found will be used.

Similarly to RTI Connext DDS Professional, the build system will try to guess the correct target architecture based
on the host build environment. Use RTIME_TARGET_NAME to manually specify the target build architecture. This
value must match one of the set of libraries installed under $ {RTIMEHOME } /11ib.

If Micro has never been built from source and no binary libraries are available under $ {RTIMEHOME } /11ib, the
build system will automatically try to build Micro from source for the detected target build environment. In this case,
RTIME_TARGET_NAME will be automatically set to one of the following values:

Host System | RTIME_TARGET_NAME

Linux Linux
macOS Darwin
Windows Windows

If you encounter any issue building Micro this way, please generate libraries by hand using the included rt ime-make
script (see the official documentation).

Note: The automatic detection of RTI Connext DDS Micro can be disabled by setting RTIMEHOME to an invalid (i.e.
non-existing) path.

Warning: The automatic detection of RTT Connext DDS Micro is only available when RTI Connext DDS Profes-
sional 6.0.0 or later is installed.

2 Chapter 1. User manual

https://community.rti.com/static/documentation/connext-micro/3.0.3/doc/html/building/index.html

rmw_connextdds, Release 0.4.0

1.1.2 Binary installation

Binary quick-start

These instructions are for Ubuntu 20.04 running on an x86 64-bit host.

1. Install your desired ROS 2 distributions, e.g. to install Rolling:

Download and trust the ROS packaging master key.

sudo apt update && sudo apt install curl gnupg2 lsb-release

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-—
—key add -

Add the ROS 2 repository to your apt repositories.
sudo sh -c 'echo "deb [arch=$ (dpkg —--print—-architecture)] http://packages.ros.org/
—ros2/ubuntu $(lsb_release —-cs) main" > /etc/apt/sources.list.d/ros2-latest.list'

Update package database.
sudo apt update

Use package ros-rolling-ros-base for a more minimal installation.
sudo apt install ros-rolling-desktop

Note: Refer to the ROS 2 documentation for more installation options.

2. Install rmw_connextdds, e.g. for Rolling:

’sudo apt install ros-rolling-rmw-connextdds

3. Run ROS 2 applications with RTI Connext DDS Professional 5.3.1, e.g.:

RMW_TMPLEMENTATION=rmw_connextdds ros2 run demo_nodes_cpp talker

Supported ROS 2 Releases

This method of installation is only available for rmw_connextdds, and only for ROS 2 releases starting with
Galactic. It can also be used by users of the Rolling distribution.

At the moment, binary packages are only available for Ubuntu 20.04 x86 64-bit.

rmw_connextdds must be built from source on all other platforms (e.g. aarch64), operating systems (other Linux
distributions, macOS, and Windows), and previous ROS 2 releases (starting with Dashing). See Installation from
source for more information.

rmw_connextddsmicro must always be built from source.

Warning: The binary version of rmw_connextdds is built with RTI Connext DDS Professional 5.3.1. You
must build it from source in order to use it with a more recent version (e.g. 6.0.1).

1.1. Installation 3

https://docs.ros.org/en/rolling/Installation.html

rmw_connextdds, Release 0.4.0

1.1.3 Installation from source

Source quick-start

1. Install ROS 2 on your system. Refer to the ROS 2 documentation for available options.

2. Load ROS 2 into the shell environment, e.g. if you installed Foxy using the binary packages available for
Ubuntu:

source /opt/ros/foxy/setup.bash

2. Install RTT Connext DDS Professional and load it in your environment, e.g. using NDDSHOME:

export NDDSHOME=~/rti_connext_dds-6.0.1

You can also use variable CONNEXTDDS_DIR instead of NDDSHOME. CONNEXTDDS_DIR will take prece-
dence if set.

Skip this step if you don’t want to build rmw_connextdds (e.g. if you only want to build
rmw_connextddsmicro).

Note: rmw_connextdds will only be compiled if RTI Connext DDS Professtional 5.3.1 or later is installed
and configured in the environment.

Replace the example path with your local Connext installation.

See RTI Connext DDS Professional Requirements for more information about installing and configuring RTI
Connext DDS Professional.

3. Optionally, install and load RTI Connext DDS Micro in your environment, e.g.:

export RTIMEHOME=~/rti_connext_dds_micro-3.0.3

Often, RTIMEHOME can be automatically guessed from the installation of RTI Connext DDS Professional.

This step is only necessary if you are using an “exported” installation of RTI Connext DDS Micro 3.x outside of
an RTI Connext DDS 6.x installation, or if you are planning on building rmw_connextddsmicro only (thus
you are not loading RTI Connext DDS Professional in your environment).

Note: rmw_connextddsmicro will only be compiled if RTT Connext DDS Micro 3.0.3 or later is installed
and configured in the environment.

Replace the example path with the location of your Micro installation. See R77 Connext DDS Micro Require-
ments for more information about installing and configuring RTT Connext DDS Micro.

4. Create an overlay directory and clone the repository:

mkdir -p ~/ros2_connextdds/src/ros2
cd ~/ros2_connextdds
git clone https://github.com/ros2/rmw_connextdds.git src/ros2/rmw_connextdds

5. Build the RMW:

colcon build

6. Load the generated environment script:

4 Chapter 1. User manual

https://docs.ros.org/en/rolling/Installation.html

rmw_connextdds, Release 0.4.0

source ~/ros2_connextdds/install/setup.bash

7. Run ROS 2 applications with RTI Connext DDS Professional by setting
RMW_IMPLEMENTATION=rmw_connextdds,e.g.:

’RMNﬁIKILEﬂENTATIQN:rmw_connextdds ros2 run demo_nodes_cpp talker

8. Run ROS 2 applications with RTI Connext DDS Micro by setting
RMW_IMPLEMENTATION=rmw_connextddsmicro,e.g.

RMW_IMPLEMENTATION=rmw_connextddsmicro \
RMW_CONNEXT INITIAL PEERS=_shmem:// \
ros2 run demo_nodes_cpp listener

Supported ROS 2 Releases

Each versions of ROS 2 supported by rmw_connextdds and rmw_connextddsmicro is stored in a dedicated
branch of ros2/rmw_connextdds.

The following table summarizes the available branches, and the level of support offered for each ROS 2 release:

ROS 2 Release | Branch Status

Rolling master Developed

Foxy foxy LTS (May 2023)
Eloquent eloquent | EOL (Nov 2020)
Dashing dashing LTS (May 2021)

Branch master is actively developed and maintained. It is used to create other branches for specific ROS 2 releases
(starting from Galactic).

Branches marked as LTS will receive updates for critical bug fixes and important patches only (until they reach EOL).

Branches marked as EOL will not receive any more updates.

1.2 Build Options

rmw_connextdds and rmw_connextddsmicro expose a few compile-time options that can be passed to cmake
to modify the source code included by each compilation unit.

You can specify these options to colcon build using argument ——cmake-args, e.g.:

colcon build --cmake-args —-DRMW_CONNEXT_LOG_MODE=printf

If you already built your workspace, use option ——cmake-force-configure to make sure to run cmake’s
configure step again (or delete the build/ directory altogether, for a more “drastic” approach).

These options have the same effect for both rmw_connextdds, and rmw_connextddsmicro.

Note: All options are case insentitive.

1.2. Build Options 5

https://github.com/ros2/rmw_connextdds

rmw_connextdds, Release 0.4.0

1.21 RMW_CONNEXT_LOG_MODE

Option RMW_CONNEXT_LOG_MODE controls the logging calls made by rmw_connextdds, and
rmw_connextddsmicro.

Every log call in the code is wrapped by macros, whose definition can be altered to select different logging “backends”,
and to selectively exclude them from compilation based on the log severity.

default Default logging mode, used if RMW_CONNEXT_LOG_MODE is not specified.
Use standard ROS 2 logging facilities provided by rcutils as logging backend.
Include log messages at the error and warning severities.

all Use rcutils aslogging backend. Include log messages of all severities.

Note that by default, only messages of info or higher severity will be printed. Consult the ROS 2 documenta-
tion for more information on how to increase logging verbosity.

Warning: This mode should be used with caution, since it will likely cause an increase in CPU usage even
if messages are not printed to the console.

Since rmw_connextdds and rmw_connextddsmicro do not log any messages with info severity, it
is recommended to use mode print f for debugging purposes.

printf Use printf () aslogging backend. Include all logging messages.

This mode will generate a lot of output, but it can be useful to debug issues in the code with little overhead.

1.2.2 RMW_CONNEXT_WAITSET_MODE

Option RMW_CONNEXT_WAITSET_MODE can be used to select which of the two available implementations will be
used to provision WaitSets, and middleware Events.

By default, rmw_connextdds and rmw_connextddsmicro will use an implementation based on the standard
WaitSet objects included in the DDS API. While this implementation will report the most accurate event notifica-
tions and always supports all available features, it may also introduce a non-negligible CPU overhead, which may be
undesirable in some scenarios.

For this reason, an alternative more lightweight implementation based on the standard C++ library is also available.
This implementation trades off some of the event reporting accuracy, for a much lower runtime overhead.

If this implementation is used, the “event status” structures reported by the RMW will not contain valid “status
changes”. Applications may only rely on the “absolute” counters contained in these structures.

dds Default implementation based on DDS WaitSets and Conditions.

std Alternative implementation based on C++ standard library.

6 Chapter 1. User manual

https://docs.ros.org/en/rolling/Tutorials/Logging-and-logger-configuration.html
https://docs.ros.org/en/rolling/Tutorials/Logging-and-logger-configuration.html

rmw_connextdds, Release 0.4.0

1.3 Runtime Configuration

In addition to standard configuration facilities provided by the ROS2 RMW interface, rmw_connextdds, and
rmw_connextddsmicro support the additional configuration of some aspects of their runtime behavior via custom
environment variables.

1.3.1 RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE

Enable different policies to improve interoperability with rmw_cyclonedds_cpp.

By default, ROS2 applications using rmw_connextdds will be able to communicate with those using
rmw_cyclonedds_cpp only via ROS2 publishers and subscribers, while ROS2 clients and services will not in-
teroperate across vendors.

The reason for this incompatibility lies in rmw_cyclonedds_cpp’s use of a custom mapping for propagating
request metadata between clients and services.

When this “compatibility mode” is enabled, rmw_connextdds (and rmw_connextddsmicro) will use this non-
standard profile in order to interoperate with rmw_cyclonedds_cpp, instead of using one the two standard profiles
defined by the DDS-RPC specification (see RMW_CONNEXT_REQUEST _REPLY _MAPPING).

1.3.2 RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS

By default, rmw_connextdds will try to detect the use of “large data” types, and automatically optimize the QoS
of DDS DataWriters and DataReaders using these types, to improve out of the box performance on reliable streams.

These optimizations will be applied to any endpoint whose type has a serialized size of at least IMB (configured by a
compile-time limit).

rmw_connextdds will modify a “large data” endpoint’s RTPS reliability protocol parameters to more quickly re-
cover samples, which typically improves performance in the presence of very fragmented data, but it might also end
up increasing network traffic unnecessarily, particularly if data is not exchanged at a fast periodic pace.

Variable RMW_CONNEXT_DISABLE_LARGE_DATA_OPTIMIZATIONS may be used to disable these automatic
optimizations, and revert to Connext’s default behavior.

1.3.3 RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY

By default, rmw_connextdds modifies the QoS of its DomainParticipant to enable the optimizations defined by
RTI Connext DDS’ built-in QoS snippet Optimization.Discovery.Endpoint.Fast.

These optimizations speed up the discovery process between different applications but they also introduce an overhead
in network traffic, which might be undesirable for larger systems.

Variable RMW_CONNEXT_DISABLE_FAST_ENDPOINT_DISCOVERY may be used to disable these automatic op-
timizations, and to leave the DomainParticipant’s QoS to its defaults.

1.3. Runtime Configuration 7

rmw_connextdds, Release 0.4.0

1.3.4 RMW_CONNEXT_ENDPOINT_QOS_OVERRIDE_POLICY

When this variable is not set or set to always, the QoS settings specified in the default profile will be used and the
ros QoS profile will be applied on top of it. You can use topic filters in XML profile files to have different defaults
for different topics, but you have to use the mangled topic names (see [ROS topic mangling conventions](#ros-topic-
mangling-conventions)).

In case this variable is set to never, the QoS settings will be loaded from the default profile as before but the ros QoS
profile will be ignored. Be aware of configuring the QoS of rcl topics (rt/rosout, rt/parameter_events,
etc.) and the rmw internal topic ros_discovery_info correctly.

This variable can also be set to dds_topics: <regex>, e.g. dds_topics: rt/my_topic|rt/
my_ns/another_topic. In this case, QoS settings for topics matching the provided regex will be loaded in
the same way as the never policy, and the ones that don’t match will be loaded in the same way as the always
policy.

ROS topic mangling conventions

ROS mangles topic names in the following way:

* Topics are prefixed with rt. e.g.: /my/fully/qualified/ros/topicisconverted to rt/my/fully/
qualified/ros/topic.

* The service request topics are prefixed with rq and suffixed with Request. e.g.: /my/fully/qualified/
ros/service request topic is rq/my/fully/qualified/ros/serviceRequest.

* The service response topics are prefixed with rr and suffixed with Response. e.g: /my/fully/
qualified/ros/service response topicis rr/my/fully/qualified/ros/serviceResponse.

1.3.5 RMW_CONNEXT_INITIAL_PEERS

Variable RMW_CONNEXT_INITIAL_PEERS can be used to specify a list of comma-separated values of “address
locators” that the DomainParticipant created by the RMW will use to try to make contact with remote peer applications
during the DDS discovery phase.

The values will be parsed, trimmed, and stored in QoS field DDS_DomainParticipantQos: :discovery::initial_peers,
overwriting any value it previously contained.

While both rmw_connextdds and rmw_connextddsmicro will honor this variable, equivalent, and
more advanced, functionality is already available in RTI Connext DDS, for example using variable
NDDS_DISCOVERY_PEERS.

For this reason, only users of rmw_connextddsmicro should consider specifying
RMW_CONNEXT_INITIAL_PEERS.

For example, rmw_connextddsmicro will use 1lo as its default UDP network interface (see
RMW_CONNEXT _UDP_INTERFACE), which will prevent it from accessing the default discovery peer (multi-
cast address 239.255.0.1). The default peer configuration will also prevent the DomainParticipant from carrying
out discovery over the built-in shared-memory transport. To enable discovery over this transport, in addition to the
default multicast peer:

| IMPLEMENTATION=rmw_connextddsmicro \
CONNEXT_INITIAL_ PEERS="_shmem://, 239.255.0.1" \

ros2 run demo_nodes_cpp listener

8 Chapter 1. User manual

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ConfigPeersListUsed_inDiscov.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ConfigPeersListUsed_inDiscov.htm

rmw_connextdds, Release 0.4.0

1.3.6 RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE

ROS2 applications using rmw_connextdds will not be able to interoperate with applications us-
ing the previous RMW implementation for RTI Connext DDS, rmw_connext_cpp, unless variable
RMW_CONNEXT_LEGACY_RMW_COMPATIBILITY_MODE is used to enable a “compatibility” mode with these
older implementation.

In particular, when this mode is enabled, rmw_connextdds will revert to adding a suffix (_) to the end of the names
of the attributes of the ROS2 data types propagated via DDS discovery.

1.3.7 RMW_CONNEXT_REQUEST_REPLY_MAPPING

The DDS-RPC specification defines two profiles for mapping “request/reply” interactions over DDS messages (e.g.
ROS?2 clients and services):

* the basic profile conveys information about the originator of a request as an inline payload, serialized before the
actual request/reply payloads.

* The extended profile relies on DDS’ metadata to convey request/reply information out of band.

By default, rmw_connextdds uses the extended profile when sending requests from a ROS2 client to a service,
while rmw_connextddsmicro uses the basic one.

Variable RMW_CONNEXT_REQUEST_REPLY_MAPPING can be used to select the actual profile used at runtime.
Either "basic" or "extended" may be specified.

At the moment, the extended profile is only available with rmw_connextdds. In this configuration,
rmw_connextdds will interoperate with rmw_fastrtps_cpp, €.8.:

RI

/ IMPLEMENTATION=rmw_connextdds \
ros2 run demo_nodes_cpp add_two_ints_server

RMW_TIMPLEMENTATION=rmw_fastrtps_cpp \
ros2 run demo_nodes_cpp add_two_ints_client

When using the basic profile, rmw_connextdds will interoperate with rmw_connextddsmicro,e.g.:

RMW_TIMPLEMENTATION=rmw_connextdds \
RMW_CONNEXT_REQUEST_REPLY_MAPPING=basic \

ros2 run demo_nodes_cpp add_two_ints_server

RMW_IMPLEMENTATION=rmw_connextddsmicro \
W _CONNEXT INITIAL PEER=localhost \
ros2 run demo_nodes_cpp add_two_ints_client

Use variable RMW_CONNEXT_CYCLONE_COMPATIBILITY_MODE to enable interoperability —with
rmw_cyclonedds_cpp using a non-standard version of the basic profile, e.g.:

CO NE_COMPATIBILITY_ MODE=y \
ros2 run demo_nodes_cpp add_two_ints_server

RMW_TIMPLEMENTATION=rmw_cyclonedds_cpp \
ros2 run demo_nodes_cpp add_two_ints_client

1.3. Runtime Configuration 9

https://www.omg.org/spec/DDS-RPC/About-DDS-RPC/

rmw_connextdds, Release 0.4.0

1.3.8 RMW_CONNEXT UDP_INTERFACE

RTT Connext DDS Micro requires applications to explicitly configure the network interface to use for UDPv4 commu-
nication.

rmw_connextddsmicro makes the arbitrary decision of using lo as the default interface.

This is undesireable if non-local communication is required, and/or if the default DDS multicast peer (239.255.0.
1) is to be used.

Variable RMW_CONNEXT_UDP_INTERFACE may be used to customize the network interface actually used by RTI
Connext DDS Micro’s UDPv4 transport, e.g. to use eth0:

RMW_IMPLEMENTATION=rmw_connextddsmicro \
RMW_CONNEXT_UDP_INTERFACE=ethO \
ros2 run demo_nodes_cpp listener

This variable is not used by rmw_connextdds.

1.3.9 RMW_CONNEXT USE_DEFAULT PUBLISH MODE
rmw_connextdds will always set DDS_DataWriterQos: :publish_mode: : kind of any DataWriter it cre-
ates to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS, in order to enable out of the box support for “large data”.

This behavior might not be always desirable, and it can Dbe disabled by setting
RMW_CONNEXT_USE_DEFAULT_PUBLISH_MODE to a non-empty value.

This variable is not used by rmw_connextddsmicro, since it doesn’t automatically override
DDS_DataWriterQos: :publish_mode: :kind.

1.4 Release History

10 Chapter 1. User manual

CHAPTER
TWO

DEVELOPER MANUAL

2.1 Coding Style

11

	User manual
	Installation
	Build Options
	Runtime Configuration
	Release History

	Developer manual
	Coding Style

